期刊专题

10.11896/jsjkx.200600177

基于平均神经网络参数的DQN算法

引用
在深度强化学习领域,如何有效地探索环境是一个难题.深度Q网络(Deep Q-Network,DQN)使用ε-贪婪策略来探索环境,ε的大小和衰减需要人工进行调节,而调节不当会导致性能变差.这种探索策略不够高效,不能有效解决深度探索问题.针对DQN的ε-贪婪策略探索效率不够高的问题,提出一种基于平均神经网络参数的DQN算法(Averaged Parameters DQN,AP-DQN).该算法在回合开始时,将智能体之前学习到的多个在线值网络参数进行平均,得到一个扰动神经网络参数,然后通过扰动神经网络进行动作选择,从而提高智能体的探索效率.实验结果表明,AP-DQN算法在面对深度探索问题时的探索效率优于DQN,在5个Atari游戏环境中相比DQN获得了更高的平均每回合奖励,归一化后的得分相比DQN最多提升了112.50%,最少提升了19.07%.

深度强化学习、深度Q网络、神经网络参数、深度探索

48

TP181(自动化基础理论)

教育部联合基金6141A02011607

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

223-228

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn