期刊专题

10.11896/jsjkx.200100048

3D点云形状补全GAN

引用
在真实的扫描环境中,由于视线遮挡或技术人员操作不当,实际采集到的点云模型会存在形状不完整的问题.点云模型的不完整性会对后续应用产生严重的影响,因此提出3D点云形状补全GAN用于完成点云模型的形状补全.该网络的点云重建部分由PointNet中用于数据对齐的T-Net结构与3D点云AutoEncoder网络相结合,来完成预测和填充缺失数据,识别器采用3D点云AutoEncoder中的Encoder部分对补全3D点云数据与真实的3D点云数据进行区分.最后,在ShapeNet数据集中训练上述网络结构,对所训练的网络模型进行验证并与其他基准方法进行定性比较.从实验结果可以看出,3D点云形状补全GAN可以将具有缺失数据的点云模型补全为完整的3D点云.在ShapeNet的3个子数据集chair,table以及bed上,相比基于3D点云AutoEncoder的方法,所提方法的F 1分数分别提高了3.0%,3.3%以及3.1%,相比基于体素3D-EPN的方法,所提方法的F 1分数分别提高了9.9%,5.8%以及4.3%.

3D点云、形状补全、AutoEncoder、生成对抗网络

48

TP391(计算技术、计算机技术)

航空科学基金2018ZC41002

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

192-196

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn