基于全U网络的混凝土路面裂缝检测算法
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法.首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验.结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%,相较于原U-net分别提升了1.48%,4.68%和3.29%,在复杂环境中也能提取完整裂缝,保证了裂缝检测的鲁棒性.
裂缝检测、U-net模型、全U网络
48
TP391.41(计算技术、计算机技术)
国家自然科学基金61701060
2021-04-19(万方平台首次上网日期,不代表论文的发表时间)
共5页
187-191