期刊专题

10.11896/jsjkx.200600047

基于语义对比生成对抗网络的高倍欠采MRI重建

引用
利用数据的稀疏性从随机欠采样的K空间重建图像,是解决磁共振成像(Magnetic Resonance Imaging,MRI)因采集时间过长而应用受限问题的主要手段.然而,现有的方法重建高倍欠采图像时纹理细节丢失严重.针对这一问题,借鉴生成对抗网络的对抗学习思想,文中提出一种基于语义对比生成对抗网络的高倍欠采MRI重建方法(Semantic-Contrast Generative Adversarial Network,SC-GAN).该方法由连续的两部分组成.第一部分将笛卡尔高倍随机欠采样MRI图像输入基于U-NET的生成器,与鉴别器不断博弈对抗生成初步重建图像,以此构建重建子网;另一部分是语义对比子网,通过VGG-16比较初步重建图像与全采样图像的语义信息,比较结果反馈给第一部分进行参数调优,直到生成最佳的重建图像.实验结果表明,在加速因子高达7(14%)时,获得了主客观评价结果均较好的重建图像.与先进的重建方法相比,所提方法的内存损耗更低、收敛速度更快且纹理细节更丰富,可为下一代MRI机器的研发提供算法支持.

MRI重建、高倍欠采图像、生成对抗网络、语义对比、稀疏性、深度学习

48

TP391(计算技术、计算机技术)

山西省应用基础研究项目;山西省自然科学基金;中北大学第十六届研究生科技立项资助项目

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

169-173

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn