基于BCNN的胎儿颅脑超声横切面识别算法
孕期超声检查是评估胎儿大脑发育、检测生长异常的重要步骤,开展对胎儿早期检查准确高效的诊断研究具有重要的临床价值.文中使用双线性卷积神经网络BCNN进行胎儿颅脑横切面识别,提出了BCNN-R和BCNN-S两种算法.BCNN算法首先对输入的胎儿颅脑超声影像数据进行预处理,去除个人信息等敏感信息;其次,利用两路并行的子网络从影像数据中提取辨识度高、鲁棒性强的横切面特征,并将其融合得到有助于识别的细微特征;最后使用线性连接层进行识别和分类.为了验证算法的有效性,在自建胎儿超声数据集JFU19上进行了对比实验,实验结果表明,所提算法相比常见的深度网络(GoogleNet,DenseNet,SeNet等)在分类性能上有明显的提升,其中BCNN-S算法的总体准确率达到了88.95%,BCNN-R在水平横切面的识别上达到了97.22%的精确度和88.61%的召回率.此外,在公开数据集HC18上进行了实验,BCNN算法的准确率、精确度、召回率分别达到了89.48%,87.66%和87.71%,进一步验证了算法的有效性.
胎儿超声、颅脑图像、横切面识别、深度学习、BCNN
48
TP391(计算技术、计算机技术)
国家自然科学基金;江苏省妇幼健康科研面上项目;镇江市重点研发计划社会发展项目
2021-04-19(万方平台首次上网日期,不代表论文的发表时间)
共6页
151-156