基于骨骼关键点检测的多人行为识别
人体行为识别(Human Activity Recognition,HAR)技术是计算机视觉领域的研究热点,目前多人HAR的研究仍存在很多技术难点.针对多人HAR中人数判断不准确、特征提取难度大导致行为识别准确率低的问题,提出了一种基于骨骼关键点检测的多人行为识别系统.该系统将骨骼点提取与动作识别相结合,首先对原始视频进行图像帧提取,然后通过OpenPose算法得到人体骨骼关键点数据来对人体进行检测并标注,最后根据骨骼点的特点提取人体姿态特征.同时,为准确描述特征之间的关系,提出了一种基于帧窗口矩阵的特征描述方法,该方法将支持向量机(Support Vector Machine,SVM)作为分类器以完成多人行为识别.选择UT-Interaction和HMDB51这两个公开的数据集中的10类日常典型行为作为测试对象,实验结果表明,所提方法可以有效提取图像中的多人骨骼关键点信息,且其对10类日常典型行为的平均识别准确率达86.25%,优于对比的其他已有方法.
OpenPose算法、骨骼关键点提取、姿态特征提取、SVM分类器
48
TP391(计算技术、计算机技术)
国家重点研发计划子课题;国家自然科学基金;山东省教育科学"十三五"规划课题
2021-04-19(万方平台首次上网日期,不代表论文的发表时间)
共6页
138-143