期刊专题

10.11896/jsjkx.200800025

一种基于标签相关度的Relief特征选择算法

引用
特征选择在机器学习和数据挖掘中起到了至关重要的作用.Relief作为一种高效的过滤式特征选择算法,能处理多种类型的数据,且对噪声的容忍力较强,因此被广泛应用.然而,经典的Relief算法对离散特征的评价较为简单,在实际进行特征选择时并未充分挖掘特征与类标签之间的潜在关系,具有很大的改进空间.针对经典的Relief算法对离散特征的评价方式较为简单这一不足,提出了一种基于标签相关度的离散特征评价方法.该算法充分考虑了不同特征的特性,给出了一种面向混合特征的距离度量方式,同时从离散特征与标签之间的相关度出发,重新定义了Relief算法对离散特征的评价体系.实验结果表明,改进后的Relief算法与经典的Relief算法和现有的一些面向混合数据的特征选择算法相比,其分类精度均有不同程度的提升,具有良好的性能.

特征选择、Relief、标签相关度、VDM、决策树

48

TP181(自动化基础理论)

国家自然科学基金;山西省应用基础研究项目

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

91-96

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn