期刊专题

10.11896/jsjkx.200200024

基于CNN和LSTM的移动对象目的地预测

引用
移动对象目的地预测是基于位置的服务的重要组成部分.该领域一直存在数据稀疏、长期依赖等难以解决的问题.为了有效解决这些问题,首先引入了一种基于最小描述长度策略(Minimum Description Length,MDL)的轨迹分段方法,以获得轨迹的最佳分段,提高轨迹之间的相似度,实现对轨迹的简化.随后将分段后的数据进行图像化处理和局部特征提取,并对轨迹目的地进行聚类,从而为轨迹数据增加标签.最后提出了一种基于卷积和长短期记忆循环单元的深度学习算法CNN-LSTM,该算法先将局部图像数据和标签作为卷积神经网络(Convolutional Neural Network,CNN)模型的输入,通过空间特征的深度提取来保留有效信息,再利用长短期记忆网络(Long-Short Term Memory,LSTM)算法进行训练和目的地预测.在移动对象的真实轨迹数据集上进行了大量实验,结果表明,所提CNN-LSTM方法具有较强的学习能力,能更好地捕捉轨迹时空相关性.与现有的最新相关算法相比,该方法具有很高的目的地预测准确度.

移动对象、目的地预测、轨迹、CNN、LSTM

48

TP311(计算技术、计算机技术)

国家自然科学基金U1433116

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共8页

70-77

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn