正则(3,4)-CNF公式的社区结构
通过构造适当的极小不可满足公式以实现在多项式时间内将3-CNF公式归约转换为一个正则(3,4)-CNF公式,转换后的公式与原公式具有相同的可满足性,同时公式的结构也发生相应的变化.图的社区结构反映了图的模块特性,文中将CNF公式转化为相应的图,研究公式图的模块特性与公式某些性质之间的关系.将归约前后的两类公式转换为相应的图并研究其模块特性,发现转换后得到的正则(3,4)-CNF公式具有较高的模块度.此外,在使用DPLL(Davis Putnam Logemann Loveland)算法求解CNF公式的过程中,发生冲突时利用冲突驱动子句学习策略,得到一个学习子句并将其添加到原公式中,使得原公式的模块度降低.研究发现:将DPLL算法与冲突驱动子句学习策略结合应用到正则(3,4)-CNF公式时,其学习子句所包含的绝大部分变元位于不同的社区中.
SAT问题、DPLL、正则(3,4)-CNF公式、社区结构、模块度
48
TP301(计算技术、计算机技术)
国家自然科学基金61762019
2021-04-19(万方平台首次上网日期,不代表论文的发表时间)
共5页
26-30