期刊专题

10.11896/jsjkx.200200061

面向铁路文本分类的字符级特征提取方法

引用
铁路文本分类对于我国铁路事业的发展具有重要的实用意义.现有的中文文本特征提取方法依赖于事先对文本的分词处理,然而面向铁路文本数据进行分词的准确率不高,导致铁路文本的特征提取存在语义理解不充分、特征获取不全面等局限性.针对以上问题,提出了一种字符级特征提取方法CLW2V(Character Level-Word2Vec),有效地解决了铁路文本中专业词汇丰富且复杂度高所导致的问题.与基于词汇特征的TF-IDF和Word2Vec方法相比,基于字符特征的CLW2V方法能够提取更为精细的文本特征,解决了传统方法依赖事先分词而导致的特征提取效果不佳的问题.在铁路安监发牌数据集上进行的实验验证表明,面向铁路文本分类的CLW2V特征提取方法优于传统的依赖分词的TF-IDF和Word2Vec方法.

铁路短文本、字符级数据、特征提取方法、文本分类

48

U229;TP391.1(电气化铁路)

国家重点研发计划课题基金项目;国家自然科学青年基金项目

2021-03-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

220-226

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn