基于KNN与矩阵变换的图节点嵌入归纳式学习算法
图节点的低维嵌入在各种预测任务中是非常有用的,如蛋白质功能预测、内容推荐等.然而,多数方法不能自然推广到不可见节点.图采样聚合算法(Graph Sample and Aggregate,Graphsage)虽然可以提高不可见节点生成嵌入的速度,但容易引入噪声数据,且生成的节点嵌入的表示能力不高.为此,文中提出了一种基于KNN与矩阵变换的图节点嵌入归纳式学习算法.首先,通过KNN选取K个邻节点;然后,根据聚合函数生成聚合信息;最后,利用矩阵变换与全连接层对聚合信息和节点信息进行计算,得到新的节点嵌入.为了有效权衡计算时间与性能,文中提出一种新的聚合函数,对邻节点特征运用最大池化作为聚合信息输出,以更多地保留邻节点信息,降低计算代价.在reddit和PPI两个数据集上的实验表明,所提算法在micro-f1和macro-f1两个评价指标上分别获得了4.995%与10.515%的提升.因此,该算法可以大幅减少噪声数据,提高节点嵌入的表示能力,快速有效地为不可见节点及不可见图生成节点嵌入.
低维嵌入、KNN、节点嵌入、聚合函数、表示能力
48
TP391(计算技术、计算机技术)
国家自然科学基金61672227
2021-03-15(万方平台首次上网日期,不代表论文的发表时间)
共5页
201-205