期刊专题

10.11896/jsjkx.200600134

基于LSTM-Attention的RFID移动对象位置预测

引用
随着射频识别(RFID)技术的不断发展,其相比全球定位系统(GPS)具有高精度、数据信息量大的优势,将其应用于智能交通以预测移动对象位置受到广泛关注.然而,由于其定位基站分布离散,并且不同基站对位置预测的影响权重不同,以及长期的历史信息会来带维数灾难等,移动对象的位置预测面临着严峻的挑战.针对这些挑战,在分析现有预测算法的不足的基础上,提出了一种长短期记忆网络(LSTM)和注意力(Attention)机制相结合的机器学习模型(LSTM-Attention).该算法将one-hot编码后的输入向量通过神经网络进行降维处理后,利用注意力机制来发掘不同的定位基站对位置预测的权重影响,最后进行位置预测.在南京交管局提供的RFID数据集上进行的对比实验表明,与现有算法相比,所提算法在预测准确性上有明显的提升.

RFID、降维、位置预测、长短期记忆网络、注意力机制

48

TP311(计算技术、计算机技术)

国家自然科学基金61728204

2021-03-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

188-195

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn