期刊专题

10.11896/jsjkx.191200104

基于特征聚类的轻量级图像搜索系统

引用
在图像搜索的场景中,由于搜索请求的随机性,为了提高搜索速度,搜索算法运行时需要把整个数据集预先载入到运行内存.由于运行内存价格远高于同容量的硬盘价格,降低运行内存自然可以大大降低图像搜索服务的成本,但如果直接对数据进行压缩,往往会极大地损失搜索精度.在这种情况下,文中提出了一种基于图像内容特征的分块式图像搜索框架.先利用神经网络的方法来预先提取图片特征,在不对特征进行量化压缩的前提下,采用一种启发式的聚类方法对数据进行分块,同时保证每个数据块的数据之间有一定的相似性.对于每个数据块,采用基于图结构的HNSW算法来构建索引子图以加速图片查询.在该框架下,通过控制查询时访问的数据块的个数,可以在保证精度的前提下大大减少算法所需要的运行内存容量.

图像检索、相似搜索、聚类、图像特征提取、近似最近邻匹配

48

TP391(计算技术、计算机技术)

国家自然科学基金61672482

2021-03-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

148-152

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn