语义区域风格约束下的图像合成
生成对抗网络近年来发展迅速,其中语义区域分割与生成模型的结合为图像生成技术研究提供了新方向.在当前的研究中,语义信息作为指导生成的条件,可以通过编辑和控制输入的语义分割掩码来生成理想的特定风格图像.文中提出了一种具有语义区域风格约束的图像生成框架,利用条件对抗生成网络实现了图像分区域的自适应风格控制.具体而言,首先获得图像的语义分割图,并使用风格编码器提取出图像中不同语义区域的风格信息;然后,在生成端将风格信息和语义掩码对应生成器中的每个残差块分别仿射变换为两组调制参数;最后,输入到生成器中的语义特征图根据每个残差块的调制参数加权求和,并通过卷积与上采样渐进式地生成目标风格内容,从而有效地将语义信息和风格信息相结合,得到最终的目标风格内容.针对现有模型难以精准控制各语义区域风格的问题,文中设计了新的风格约束损失,在语义层次上约束区域风格变化,减小不同语义区域的风格编码之间的相互影响;另外,在不影响性能的前提下,采取权重量化的方式,将生成器的参数存储规模压缩为原来的15.6%,有效降低了模型的存储空间消耗.实验结果表明,所提模型的生成质量在主观感受和客观指标上较现有方法均有显著提高,其中FID分数比当前最优模型提升了约3.8%.
条件生成模型、自适应归一化、图像生成、生成对抗网络、深度学习
48
TP391(计算技术、计算机技术)
国家自然科学基金;深圳科技研发项目
2021-03-02(万方平台首次上网日期,不代表论文的发表时间)
共8页
134-141