期刊专题

10.11896/jsjkx.200700111

基于BERT的社交电商文本分类算法

引用
随着网络购物的高速发展,网络商家和购物者在网络交易活动中产生了大量的交易数据,其中蕴含着巨大的分析价值.针对社交电商商品文本的文本分类问题,为了更加高效准确地判断文本所描述商品的类别,提出了一种基于BERT模型的社交电商文本分类算法.首先,该算法采用BERT(Bidirectional Encoder Representations from Transformers)预训练语言模型来完成社交电商文本的句子层面的特征向量表示,随后有针对性地将获得的特征向量输入分类器进行分类,最后采用社交电商文本的数据集进行算法验证.实验结果表明,经过训练的模型在测试集上的分类结果F1值最高可达94.61%,高出BERT模型针对MRPC的分类任务6%.因此,所提社交电商文本分类算法能够较为高效准确地判断文本所描述商品的类别,有助于进一步分析网络交易数据,从海量数据中提取有价值的信息.

多标签文本分类、特征提取、模型构建、双向编码器、机器学习

48

TP181(自动化基础理论)

2021-03-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

87-92

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn