边缘计算场景中基于虚拟映射的隐私保护卸载算法
随着移动边缘计算(Mobile Edge Computing,MEC)和无线充电技术(Wireless Power Transmission,WPT)的诞生和发展,越来越多的计算任务被卸载至MEC服务器以进行处理,并借助WPT技术为终端设备供电,以缓解终端设备计算能力受限和设备能耗过高的问题.由于卸载的任务和数据往往携带用户个人使用习惯等信息,因此将任务卸载到MEC服务器进行处理会导致新的隐私泄露问题.针对上述问题,文中首先对计算任务的隐私量进行定义,并设计了能够降低用户在MEC服务器累积隐私量的虚拟任务映射机制;然后,综合考虑映射机制与隐私约束的优化,提出了一种具有隐私保护效果的在线隐私感知计算卸载算法;最后,对仿真结果进行分析发现,所提卸载方法能够使用户累积隐私量保持在隐私阈值内,达到了隐私保护的效果,同时提高了系统计算速率,降低了用户计算时延.
边缘计算、计算卸载、隐私保护、虚拟映射、神经网络
48
TP393(计算技术、计算机技术)
国家自然科学基金资助项目;南京邮电大学自然科学基金项目
2021-02-02(万方平台首次上网日期,不代表论文的发表时间)
共7页
65-71