期刊专题

10.11896/jsjkx.200900046

基于边缘计算的图像语义分割应用与研究

引用
随着深度学习在医学影像分割、药品检测等医学领域的广泛应用,语义分割技术承载了举足轻重的地位.语义分割融合了目标检测和图像识别两大技术,旨在将图像分割成多组具有特定语义的区域,属于像素级别的密集分类问题.然而为了推动移动视觉识别技术的有效发展,传统深度学习模型在功耗、内存管理、实时性等方面都无法满足移动设备的要求.边缘计算是一种有效将计算、网络、存储、带宽等能力从主机端延伸到移动边缘端的新型架构模式,从而实现在有限计算资源环境下的模型推理运行.因此,文中尝试在基于边缘TPU协处理器的开发板上完成FCN,SegNet,U-Net等经典图像语义分割模型的转换、部署及推理运行,并在采集的真实药品数据集上验证提出的语义分割模型的正确性及性能.

深度学习、语义分割、边缘计算、边缘TPU

47

TP181(自动化基础理论)

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

276-280

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn