期刊专题

10.11896/jsjkx.200600009

基于深度学习的图像补全算法综述

引用
图像补全是图像处理的一个研究领域,为有物体遮挡以及图像关键部分缺失状况下的图像识别提供了解决方案,应用领域非常广泛,受到了人们的关注.经深度学习方法补全的图像具有更高的图像分辨率和可靠性,逐渐成为图像补全的主流方法之一.文中针对图像补全领域的主要问题,介绍了相关深度学习方法的基本原理和经典算法,系统而渐进地剖析了2010年以来有代表性的图像补全方法,探讨了基于深度学习的图像补全在不同领域的具体应用,并列举了该研究领域目前面临的几个问题.

图像补全、深度学习、生成对抗网络、上下文编码

47

TP391(计算技术、计算机技术)

吉林省自然科学基金20150101053JC

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共14页

151-164

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn