期刊专题

10.11896/jsjkx.200300086

基于PCANet的价值成长多因子选股模型

引用
作为量化投资程序中的重要组成部分,量化多因子选股模型是通过历史金融数据建模来预测股票收益,该模型中引入了包括深度学习在内的众多机器学习方法.文中则首次探究了PCANet这样一种深度架构在量化选股中的应用.具体来说,该框架一方面将金融时序数据转换为二维图像数据,从而将金融时间序列预测问题转变为图像分类问题;另一方面将PCA应用于深度架构,充分发挥其能力,同时提供了金融行业可以理解和反馈的可解释性.两年的实际数据回测表明,该方法获得了57.17%的夏普比率、16.84%的超额收益以及-18.14%的最大回撤.相比传统的线性回归模型和深度学习的CNN模型,所提基于PCANet的价值成长多因子选股模型获得了更高的超额收益和夏普比率,同时保持了继承于PCA的特征提取的解释性.

PCANet、多因子选股、超额收益、夏普比率、因子图

47

F830.91(金融、银行)

中央财经大学科研创新团队支持计划;教育部人文社会科学重点研究基地重大项目

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共4页

64-67

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn