期刊专题

10.11896/jsjkx.191100077

基于X12-LSTM模型的保费收入预测研究

引用
经济新常态下保费收入预测是学术界和业界共同关注的话题.考虑到保费收入时间序列数据具有强烈的季节性特点,文中构建基于长短期记忆(Long Short-Term Memory,LSTM)神经网络的X12-LSTM模型以预测保费收入,并与简单LSTM模型、SARIMA模型和BP神经网络进行对比.实验结果表明,X12-LSTM模型对保费收入的预测最准确且稳定度最好.相比简单LSTM模型,X12-LSTM模型在准确度方面提升8%,在稳定度方面提升8%,说明X12-LSTM模型是对简单LSTM模型的有效改进,更适用于具有季节性特征的数据预测.

X12季节调整法、长短期记忆神经网络、保费收入预测、季节性、SARIMA

47

TP391(计算技术、计算机技术)

2020-07-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

512-516

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn