期刊专题

10.11896/jsjkx.190700161

改进的GHSOM算法在民航航空法规知识地图构建中的应用

引用
针对文本聚类过程中簇的数量无法动态改变及文本分类结果不够精确等问题,文中引入并改进了成长型分级自组织映射(Growing Hierarchical Self-Organizing Map,GHSOM)算法,以提高文本聚类的精确度,并尝试使用改进后的GHSOM算法构建民航航空法规知识地图.GHSOM算法为多层分级结构,每一层包含数个独立的成长型SOM,通过增长规模来在一定程度上更加详细地描述数据集,提高分类效果.在此基础上,以民用航空领域的各项法律、法规条文为样本资料集,结合中文分词、关键词提取、文件向量等技术手段,利用改进的GHSOM算法对文本进行聚类分析,并最终完成民航航空法规知识地图的构建.实验结果表明,所提算法具有显著的文本聚类能力,利用该算法构建的民航航空法规知识地图取得了较好的分类效果,其精确度、召回率等评价指标也获得了进一步的提升.

知识地图、自然语言处理、文本聚类、word2vec、GHSOM

47

TP391.1(计算技术、计算机技术)

2020-07-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

429-435

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn