期刊专题

10.11896/jsjkx.200200044

基于WiFi信号的轻量级步态识别模型LWID

引用
身份识别作为普适计算和人机交互领域的重要研究内容,受到研究者的广泛关注.基于WiFi信号的传统身份识别方法虽然取得了较大的进展,但仍然面临分类能力弱、模型存储代价高、训练时间长等问题.对此,提出了基于多层神经网络的轻量级步态识别模型(Light Weight Identification,LWID).该方法首先通过将原始时序数据进行图片化重构,最大限度地保留了不同载波间的特征信息;然后通过设计一种仿生的Balloon机制,实现了对网络层中神经元数量的裁剪,并通过联合使用不同尺寸的卷积核,实现了对数据中特征的提取与特征图中通道信息的整合,从而在提高模型分类能力的前提下实现了模型规模的轻量化.实验结果表明,所提模型在50人的数据集中取得了98.8%的识别率.与传统的基于WiFi信号的身份识别模型相比,所提模型具有更强的分类能力与鲁棒性,同时该模型可以压缩至现有同等精度图片识别模型大小的6.14%.

LWID、步态识别、模型压缩、频率能量图、Balloon机制

47

TP391(计算技术、计算机技术)

国家自然科学基金61972092

2020-11-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

25-31

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn