期刊专题

10.11896/jsjkx.191000099

结合社区嵌入和节点嵌入的社区发现算法

引用
社区作为社交网络的重要属性,对理解网络功能和预测演化有着重要作用.通过网络嵌入将网络节点转化成低维稠密的特征向量,并将其应用于社区发现等机器学习任务,是近年来的研究热点.传统的网络嵌入方法仅针对节点嵌入,忽略了社区嵌入的重要性.针对这样的问题,提出了将社区嵌入和改进的节点嵌入相结合的方法CNE,从而获得融合结构信息和属性信息的节点表示.节点嵌入将节点表示为低维向量,类似地,社区嵌入把社区表示为低维空间中的高斯分布,二者将多种节点相似性相结合,互相促进,从而获得更为准确的社区发现结果.在公开数据集上将所提算法与传统的社区发现算法和网络嵌入方法进行比较,实验结果表明提出的CNE方法具有更高的精度.

社交网络、社区发现、网络嵌入、社区嵌入

47

TP181(自动化基础理论)

国家自然科学基金项目;太原理工大学青年创新团队项目

2020-10-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

121-125

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn