期刊专题

10.11896/jsjkx.190800160

基于信息熵的级联Siamese网络目标跟踪

引用
目标跟踪是计算机视觉领域的一个重要研究方向,针对目前算法对于目标外观变化的鲁棒性较差等问题,提出了一种基于信息熵的级联Siamese网络目标跟踪方法.首先利用孪生神经网络(Siamese network)对第一帧目标模板和当前帧待检测区域提取深度卷积特征,并通过相关性计算响应图;然后根据定义的信息熵和平均峰值系数评价响应图质量,针对质量差的响应图对卷积特征进行模型因子更新;最后利用最终的响应图确定目标位置并计算最佳尺度.在VOT2016,VOT2017数据集上进行实验,结果证明在保证实时运行的基础上所提算法的精度优于其他算法.

目标跟踪、信息熵、神经网络、尺度估计

47

TP391.41(计算技术、计算机技术)

国家自然科学基金;山东省自然科学基金;中央高校基本科研业务费专项资金资助

2020-09-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

157-162

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn