基于Levy飞行策略的改进樽海鞘群算法
针对樽海鞘群算法(Salp Swarm Algorithm,SSA)在寻优过程中存在的收敛速度较慢、容易陷入局部最优的缺点,提出了一种改进的采用莱维飞行策略的条件化更新的樽海鞘群算法(Levy Flight-based Conditional Updating Salp Swarm Algo-rithm,LECUSSA),并将其运用于分类算法的特征子集选择过程.首先,利用莱维飞行策略的长短跳跃特点对领导者位置进行随机更新,以增强全局最优的搜索能力;其次,增加对追随者位置的更新条件,让追随者不再盲目地跟随,从而加快收敛速度.在23个优化基准函数上对LECUSSA算法与其他算法进行了性能比较实验;并把算法运用到支持向量机(Support Vector Ma-chine,SVM)算法的分类特征子集选择中,采用8个UCI数据集对特征选择后的分类结果进行了性能比较实验.实验结果表明,LECUSSA具有良好的全局最优搜索能力和较快的收敛速度,利用LECUSSA算法进行特征选择后,能够找到最佳分类准确率的特征子集.
樽海鞘群算法、莱维飞行、条件化更新、特征选择
47
TP181(自动化基础理论)
广西科技计划;公益性行业气象科研专项
2020-07-23(万方平台首次上网日期,不代表论文的发表时间)
共7页
154-160