期刊专题

10.11896/jsjkx.190700121

基于多尺度残差网络的对象级边缘检测算法

引用
面向对象的边缘检测技术是智能视觉处理领域的关键基础技术,然而目前基于卷积神经网络的边缘检测结果存在分辨率低、噪声较多等问题.因此,文中提出了一种基于多尺度残差网络的对象级边缘检测算法.首先,设计了混合空洞卷积残差块,来替换原始残差网络中的普通卷积核,以放大网络的感受野;然后,设计了多尺度特征增强模块,对边缘信息进行多尺度特征提取,以放大网络的信息接受域;最后,设计了结合顶层语义特征的金字塔多尺度特征融合模块,将不同尺度下的特征信息进行融合,以输出边缘检测后的图像.为了验证所提算法的有效性,在公开数据集BSDS500上进行实验.实验结果表明,与现有算法相比,所提算法具有更好的边缘检测效果,客观指标ODS,OIS和AP分别达到了0.819,0.838和0.849,主观检测效果也更接近真实值,噪声更少.

残差网络、空洞卷积、多尺度特征增强、金字塔特征融合结构

47

TP391(计算技术、计算机技术)

浙江省自然科学基金;国家自然科学基金

2020-07-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

144-150

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn