基于单列多尺度卷积神经网络的人群计数
单张图片和监控视频中的人群计数问题在近年来受到了越来越多的关注.尺度的变化和人群遮挡等问题,导致人群计数是一项十分具有挑战性的任务,但是深度卷积神经网络被证明能有效地解决这一问题.文中提出了一种单列多尺度的卷积神经网络,该网络提供了一种数据驱动的深度学习方法,能够理解各种不同的场景,并能进行精确的计数估计.该网络模型主要由作为二维特征提取的前端与中端,和用来还原密度图的后端组成.其中,使用堆叠池代替最大池化层,在不引入额外参数的前提下增加了模型的尺度不变性.网络模型前端采用部分VGG-16结构;中端采用FME(特征聚合模块),用来打破不同列之间的独立,以更好地提取多尺度特征信息;后端采用3列5层的不同扩张率的空洞卷积,在保持分辨率不变的情况下增加感受野,生成更高质量的人群密度图,并引入一种相对人数损失,以提升稀疏密度人群情况下模型的性能.该模型在两个最具挑战性的人群计数数据集上都取得了很好的效果.实验结果表明,在公开人群计数数据集ShanghaiTech的两个子集和UCF_CC_50上,该方法的平均绝对误差(MAE)和均方误差(MSE)分别是66.2和103.0、8.7和13.4、251.0和329.5,性能比传统人群计数方法更好.与其他模型相比,该模型拥有更高的精度和更好的鲁棒性,对稀疏人数图像有着更好的计数效果.
卷积神经网络、人群计数、堆叠池、空洞卷积、特征聚合、相对人数损失
47
TP391(计算技术、计算机技术)
湖南省教育厅优秀青年项目;长沙理工大学青年教师成长计划项目
2020-04-29(万方平台首次上网日期,不代表论文的发表时间)
共7页
150-156