一种面向多维特征分析过滤的视频推荐算法
近年来,抖音、快手、微视等短视频APP取得了巨大成功,用户拍摄并上传到APP平台上的视频数量暴增.在这种信息过载的环境下,为用户挖掘并推荐其感兴趣的视频成为了视频发布平台面临的难题,因此为这些平台设计高效的视频推荐算法显得尤其重要.文中针对媒体大数据挖掘和推荐领域的数据集稀疏性高和规模巨大的问题,提出一种面向多维特征分析过滤的视频推荐算法.首先,从用户行为和视频标签等多个维度对视频进行特征提取,然后进行相似性分析,加权计算视频相似度,从而获取相似视频候选集,并对相似视频候选集进行过滤,再通过排序选择评分最高的若干个视频推荐给用户.最后,基于MovieLens公开数据集,使用python3语言实现了文中提出的视频推荐算法.在数据集上进行的大量实验表明,相比传统的协同过滤算法,文中提出的面向多维特征分析过滤的视频推荐算法将推荐结果的准确率提升了6%,召回率提升了4%,覆盖率提升了18%.实验数据充分说明,从多个维度考虑视频之间的相似性,并配合大规模矩阵分解技术,在一定程度上缓解了数据集稀疏性高、数据量巨大的难题,从而有效地提高了推荐结果的准确性、召回率和覆盖率.
视频推荐、特征提取、相似性分析、协同过滤、稀疏性
47
TP399(计算技术、计算机技术)
2020-04-29(万方平台首次上网日期,不代表论文的发表时间)
共5页
103-107