期刊专题

10.11896/jsjkx.190100070

基于异步优势动作评价的RFID室内定位算法

引用
针对现有的RFID室内定位算法的精度容易受到环境因素影响的问题,提出了一种基于异步优势动作评价(Asynchronous Advantage Actor critic,A3C)的RFID室内定位算法.该算法的主要步骤为:1)将RFID的信号强度RSSI值作为输入值,多个线程子动作网络并行交互采样学习,利用子评价网络评价动作值的优劣,使模型不断优化,找到最优信号强度RSSI值,并训练定位模型;子线程网络定期将网络参数异步更新到全局网络上,全局网络最后输出参考标签的具体位置,同时训练得到异步优势动作评价定位模型.2)在线定位阶段,当待测目标进入待测区域时,记录待测目标的信号强度RSSI值,将其输入异步优势动作评价定位模型中,子线程网络从全局网络中获取最新定位信息,对待测目标进行定位,最后输出目标的具体位置.实验数据表明,基于异步优势动作评价的RFID室内定位算法与传统的基于向量机(Support Vector Machines,SVM)定位、基于极限学习机(Extreme Learning Machine,ELM)定位、基于多层神经网络定位(Multi-Layer Perceptron,MLP)的RFID室内定位算法相比,定位平均误差分别下降了66.114%,50.316%,44.494%;定位稳定性分别平均提高了59.733%,53.083%,43.748%.实验结果表明,基于异步优势动作评价的RFID室内定位算法在处理大量室内定位目标时具有较好的定位性能.

RFID、RSSI、强化学习、异步优势动作评价、室内定位

47

TP301.6(计算技术、计算机技术)

国家自然科学基金61761004

2020-04-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

233-238

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn