基于群体分布的自适应差分进化算法
差分进化算法是一种简单有效的启发式全局优化算法,但是其优化性能受差分进化策略及控制参数取值的影响较大,不合适的策略和参数容易导致算法早熟收敛.因此,针对差分进化算法搜索过程中变异策略和控制参数的选择问题,文中提出了一种基于群体分布的自适应差分进化算法(Population Distribution-based Self-adaptive Differential Evolution,PDSDE).首先,设计适应因子以衡量当前种群的分布情况,进而实现算法所处进化阶段的自适应判断;然后,根据不同进化阶段的特点,设计阶段特定的变异策略和控制参数,并设计自适应机制以实现算法策略和参数的动态调整,从而平衡算法的全局探测和局部搜索能力,以达到提高算法搜索效率的目的;最后,将所提算法与6种主流改进算法进行比较.15个典型测试函数的数值实验表明,所提算法在平均函数评价次数、求解精度、收敛速度等指标的评价优于文中给出的6种主流改进算法,因此可以证明所提算法的计算代价、优化性能和收敛性能更具优势.
差分进化、群体分布、全局优化、阶段划分、自适应
47
TP301.6(计算技术、计算机技术)
国家自然科学基金61573317
2020-04-24(万方平台首次上网日期,不代表论文的发表时间)
共6页
180-185