基于无偏线性最优估计的PET图像重建
正电子发射断层成像(Positron Emission Tomography,PET)技术在实体肿瘤的定性诊断和病灶转移的检查中具有举足轻重的作用,因此非常有必要提高PET的成像质量.然而,已有的迭代重建算法基本上都严重依赖于PET的线性模型.考虑到探测器效率、探测系统的几何尺寸、生物组织对光子的衰减以及散射效应等诸多物理因素,该模型无法真实地刻画示踪剂与正弦图数据之间的复杂关系.文中首先提出了一种新的观测模型,通过在原来的线性模型中引入未知输入项来刻画示踪剂与正弦图数据之间的关系.该项由两部分组成:1)系数矩阵,用于进一步描述投影的线性部分;2)未知输入,用于刻画示踪剂的浓度分布和投影数据之间的一些非线性关系.在此新模型的基础上,PET图像重构问题被转化成一个线性无偏的最优估计问题.然后,给出了具有待定增益的线性迭代估计模型,通过将正弦数据向未知输入项的系数矩阵的零空间零域上进行投影,消除了未知输入给线性最优估计带来的困难,借助卡尔曼滤波的设计思路,推导出了前述的估计增益.基于此估计模型,提出了一种基于无偏线性最优估计的重建算法.最后,通过仿真实验,将所提重建算法与期望极大估计算法(Expectation-Maximiza-tion reconstruction,EM)、核化的EM算法(Kernel method,KEM)以及基于标准卡尔曼滤波(Kalman Filtering method,KF)的重建算法从均方误差(Mean Square Error,MSE)、信噪比(Signal-Noise-Rate,SNR)两个方面进行了比较.实验结果表明:与其他3种算法相比,所提算法重建的图像具有更大的信噪比、更小的均方误差,视觉上更加清晰,更好地重建了肿瘤的形状和尺寸,因此具有更好的重构质量.
最优估计、未知输入、无偏估计、卡尔曼滤波
47
TP13(自动化基础理论)
浙江省自然科学基金;国家自然科学基金
2020-03-26(万方平台首次上网日期,不代表论文的发表时间)
共5页
165-169