期刊专题

一种阶段性策略自适应差分进化算法

引用
针对差分进化算法的变异策略选择问题,提出一种阶段性策略自适应差分进化算法(SSADE).首先,根据各个体与当前最优个体之间的平均距离衡量种群的拥挤度,进而估计种群的进化阶段;然后,将整个种群划分为多个子种群,并针对不同阶段的特性,设计子种群协同进化变异策略池;最后,根据各变异策略的历史成功信息,从对应的策略池中动态自适应地选择合适的变异策略,从而达到平衡全局探测和局部搜索的目的.在12个经典测试函数上的实验结果表明,所提SSADE算法在计算代价、可靠性、解的质量和扩展性方面优于现有主流算法.

差分进化、策略自适应、子种群、全局优化、协同进化

46

TP391(计算技术、计算机技术)

浙江省重点研发计划项目2017C03060;国家自然科学基金61573317

2019-07-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

106-110

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn