期刊专题

10.11896/jsjkx.190300095

基于张量分解的域适应算法

引用
由于训练数据易过期,在多数情况下训练数据和测试数据具有不同的特征分布,因此在利用源域信息时,须先尽量减小不同领域的特征分布的差异.使用张量表示特征可以维持高维空间数据的本征结构信息.朴素张量子空间学习法虽然是面向张量特征的域适应方法,但其复杂度较高,且没有达到较好的知识迁移效果.为此,文中提出了基于张量分解的域适应算法,即张量列子空间学习法和张量环子空间学习法,二者的主要思想相似.首先,使用张量表示源域和目标域的特征;其次利用张量分解方法,将特征分解为一系列三阶张量来表示子空间;然后,依次将源域特征和目标域特征映射到子空间中;最后,将特征张量重塑为矩阵形式,基于映射后的源域特征训练模型,基于映射后的目标域特征完成新领域的任务.实验结果表明,在无监督图像分类中,张量列子空间学习法和张量环子空间学习法在准确率和运行时间方面都有所提升.相比于朴素张量子空间学习法,张量列子空间学习法和张量环子空间学习法的准确率分别提高了1.68%和2.08%,且运行时间也有明显减少,算法复杂度较小.实验数据充分说明,基于张量分解的域适应算法充分减小了源域特征和目标域特征之间的差异,实现了不同领域间的知识复用.

迁移学习、域适应、张量分解、子空间学习、图像分类

46

TP181(自动化基础理论)

2020-01-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

89-94

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn