期刊专题

10.11896/jsjkx.180901764

多线路信息融合的公交车行程时间预测算法

引用
针对公交车行程时间预测存在数据稀疏、数据缺失及更新间隔长等问题,提出了一种基于相似路段划分并融合多线路信息的卡尔曼滤波算法.该算法对每条路段的属性特征和空间结构特征进行归一化处理,利用属性特征和空间结构的相似性及POI(Point of Interest)对交通影响的变化动态地划分相似路段;然后融合相似路段与目标路段上的多条公交线路的数据信息,用相似路段的数据丰富实验数据;最后结合卡尔曼滤波算法动态性高、实时性强等特点建立模型,从而实现短时预测,并对信息进行修正.选取沈阳市162线路和299线路作为实验线路,各划取一段相似路段进行基础数据采集并进行实验.通过相似路段上的信息来推断数据稀疏或缺失路段的信息,能够缩短数据更新间隔并提高算法预测的实时性及精准性,尤其在早高峰时段,提出的算法模型的绝对平均百分误差达到13.2%,能达到实时查询的性能需求.

行程时间、相似路段、卡尔曼滤波、多线路信息、行程时间预测

46

TP39(计算技术、计算机技术)

国家自然科学基金61174115

2019-12-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

222-227

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn