欠定条件下基于主成分的亚采样信号重构
传统的信息采集还原方式的资源消耗高,对信息数据的利用效率和处理效率较低,难以适应瞬息万变的战场信息感知环境,而且复杂的电磁对抗环境会造成测量通道维度的动态变化,进一步加剧了信息采集还原的难度.在大规模多输入多输出无线通信系统场景下,利用信息数据在变换域空间中的稀疏特性,提出了一种基于压缩感知理论的亚采样重构方案.该方案利用主成分基变换的方式实现信息数据的稀疏化,采用子空间追踪的方式实现信号的亚采样还原,对测量通道维度的动态变化具有较强的鲁棒性.同时,采用分块思想避免了高阶矩阵参与处理过程中的迭代运算,使得算法具有更好的求解精度和效率,实现了欠定条件下信息数据的高效重构.
大规模多输入多输出、压缩感知、主成分分析、亚采样、信号重构
46
TP391(计算技术、计算机技术)
国家自然科学基金61671475
2019-11-22(万方平台首次上网日期,不代表论文的发表时间)
共6页
103-108