期刊专题

10.11896/j.issn.1002-137X.2019.09.036

多层感知器深度卷积生成对抗网络

引用
生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法.深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练.但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其抽象层次较低,生成的图像质量不高,并且在模型性能度量方面仅以主观的视觉感受来评判图像质量.针对以上问题,文中提出了一种多层感知器深度卷积生成对抗网络(MPDCGAN),采用多层感知器卷积层取代广义线性模型在输入数据上进行卷积,以捕获图像更深层次的特征,并采用定量评估方法Frechet Inception Distance(FID)衡量图像生成质量.在4种基准数据集上的实验结果表明,采用MPDCGAN生成的图像的FID值与图像质量呈负相关关系,且图像生成质量随着FID值的降低得到了进一步的提高.

生成对抗网络、深度卷积生成对抗网络、多层感知器、FID

46

TP181(自动化基础理论)

国家自然科学基金61403266;四川省重点实验室项目KJ201419

2019-10-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

243-249

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn