期刊专题

10.11896/j.issn.1002-137X.2019.09.028

基于Tucker分解的半监督支持张量机

引用
传统的机器学习方法所使用的数据大多是基于向量空间的.支持向量机(Support Vector Machine,SVM)作为一种重要的机器学习方法,在解决小样本、非线性、高维数据等问题时具有较好的性能.但在实际应用中,图像和视频等数据都是用张量形式表示的,如果将这些张量数据直接转换成向量数据,往往会丢失一些原有的结构和相关性信息,有可能造成维度灾难和小样本问题.为了设法保持尽量多的张量结构信息,提出了一种采用Tucker分解的支持张量机(Support Tensor Machine,STM)算法.实验表明,该方法可以明显提高分类器性能;同时,支持张量机作为监督学习方式,存在无法利用未标记数据的缺点,往往受限于训练数据不足的情况.因此,将半监督学习方法与支持张量机相结合,进而提出了基于Tucker分解的半监督支持张量机算法(Semi-Supervised STM,S3TM).该算法既可以保持较多的张量结构信息,又能充分利用未标记数据.实验表明,采用该算法的预测准确率达到90.26%,从而验证了所提算法的有效性.

Tucker分解、支持张量机、半监督学习

46

TP181(自动化基础理论)

2019-10-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

195-200

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn