期刊专题

10.11896/j.issn.1002-137X.2019.09.012

社交网络中同一用户的识别

引用
对不同社交全局网络中同一用户的身份识别进行了相关研究,将社交网络建模为节点带有属性值且含有一个中心节点的网络,即ego-network,并就社交网络中身份识别的问题设计了相关算法.为挖掘同一个用户的节点对,对用户的属性、好友关系的相似度进行了建模,从而综合评价了不同社交网络中节点间的相似度,即为用户匹配评分,将其作为节点匹配的优先度;然后通过改进后的RCM算法得到全局最优的匹配结果;最后剪掉用户匹配评分较低的已匹配用户对以达到更好的效果.基于真实数据集,实验对比了该算法与几种相关算法的表现,并分析了不同参数对实验效果的影响,验证了所提算法的合理性.

社交网络、用户识别、用户属性、RCM算法

46

TP311(计算技术、计算机技术)

国家自然科学基金重点项目U1509216;国家重点研发计划项目2016YFB1000703;国家自然科学基金面上项目61472099,61602129

2019-10-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

93-98

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn