期刊专题

10.11896/j.issn.1002-137X.2019.07.033

基于稀疏贝叶斯学习的协同进化时间序列缺失数据预测算法

引用
针对大多数已有算法在预测协同进化时间序列中的缺失数据时只适用于缺失数据较少情况的问题,提出了一种高效的缺失数据预测算法.首先,应用压缩感知理论,将协同进化时间序列中的缺失数据预测问题建模成多稀疏向量恢复问题;其次,从稀疏表示向量是否足够稀疏和感知矩阵是否满足有限等距特性两个方面分析了模型的性能;最后,针对协同进化时间序列的特点设计了一种基于稀疏贝叶斯学习的高效恢复算法,该算法可以通过学习得到部分支持信息,从而同时解决多个稀疏向量的恢复问题.仿真结果表明,所提算法可以同时有效地预测出多个时间序列中的缺失数据.

协同进化时间序列、缺失数据、稀疏表示向量、感知矩阵、稀疏贝叶斯学习

46

TN911.7

国家自然科学基金61571463,61371124,61472445;江苏省自然科学基金BK20171401

2019-07-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

217-223

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn