期刊专题

10.11896/j.issn.1002-137X.2019.04.011

基于模糊神经网络的异常网络数据挖掘算法

引用
异常网络数据受到聚类中心的模糊加权扰动的影响,导致数据挖掘的聚类性不好.文中提出一种基于模糊神经网络的异常网络数据挖掘算法,该算法根据异常网络数据的混合分类属性进行相似度分析,提取异常网络数据的数值属性特征和分类属性特征,采用联合关联规则分析方法进行异常网络数据的模糊融合处理,采用基于模糊质心相异性的度量方法构建异常网络数据的分类模糊集,并在模糊数据集中进行异常网络数据混合加权和自适应分块匹配,进而提取异常网络数据的弱关联化特征量,最后将提取的特征量输入到模糊神经网络分类器中进行数据分类识别,完成异常网络数据的优化挖掘.仿真结果表明,采用所提方法进行异常网络数据挖掘的数据聚类性较好,挖掘过程的收敛性和抗干扰性较强.

模糊神经网络、异常网络数据、挖掘、特征提取

46

TP391(计算技术、计算机技术)

国家自然科学基金61170268

2019-05-28(万方平台首次上网日期,不代表论文的发表时间)

共4页

73-76

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn