期刊专题

基于RFA模型和聚类分析的百度外卖客户细分

引用
针对百度外卖行业具有的客户数量大、消费数据多、维度多等特点,提出一种基于客户消费行为视角的改进RFM模型.采用层次分析算法确定模型中各个变量的权重,并在此基础上采用K-Means聚类算法进行客户细分,计算确定客户对于商家的个人价值.数据分析结果表明,基于改进RFM模型的客户细分方法可以使商家对不同价值的客户采取针对性的策略.

百度外卖、改进RFM模型、K-Means聚类、客户细分

45

F270(企业经济)

陕西省教育厅专项科研计划项目17JK0703

2018-12-18(万方平台首次上网日期,不代表论文的发表时间)

共3页

436-438

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn