期刊专题

融合用户对项目和属性偏好的协同过滤算法

引用
协同过滤推荐算法是目前推荐系统领域中十分常用的方法.余弦相似度和Pearson相关系数是目前协同过滤推荐算法中计算相似度的两种常用算法.为提高协同过滤推荐算法的准确性,对相似度计算问题进行了研究,针对目前常用的余弦相似度和Pearson相关系数这两种相似度计算方法的不足,通过设计和引入调节因子,分别考虑用户在评分习惯和项目选择上的差异性,以对这两种传统的相似度算法进行优化和改进.另外,考虑到用户的偏好往往与项目所具有的属性有关,设计了衡量用户对属性偏好的参数,通过加权的方式将其与改进后的相似度算法进行融合,提出了一种融合用户评分习惯、项目选择差异及属性偏好的协同过滤推荐算法.在MovieLens数据集上进行的实验表明,相比于传统算法,提出的改进算法更为精确,平均绝对误差和均方根误差得到了明显的降低.

推荐系统、协同过滤、用户相似度、属性偏好、调节因子

45

TP391(计算技术、计算机技术)

国家 863 科技支撑计划项目2012AA12AA407;赛尔网络下一代互联网技术创新项目NGII20170628

2018-12-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

412-416

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn