期刊专题

基于Spark平台的并行KNN异常检测算法

引用
随着大数据时代的到来,异常检测受到了广泛关注.针对传统KNN异常检测算法处理速度和计算资源的瓶颈,以及Hadoop平台上的MapReduce不能友好支持迭代计算和基于内存计算等问题,提出了一种基于Spark平台的并行KNN异常检测算法.该算法首先对数据集进行分区和广播,然后用map函数计算数据集在每个分区的K近邻,使用reduce函数归并map函数的输出计算全局K近邻得到异常度,将异常度前n个对象视为异常.与传统KNN异常检测算法相比,在保证检测精度的前提下该算法的性能与计算资源呈近似线性关系;与其他并行异常检测算法相比,该算法无需额外扩展数据,支持迭代,而且通过在内存中缓存中间结果来减少I/O花销.实验结果证明,该算法可以提高KNN算法在大规模数据上的异常检测效率.

Spark平台、并行、K近邻、异常检测

45

TP311(计算技术、计算机技术)

民航飞行数据分析研究项目XM2852

2018-12-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

349-352,366

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn