期刊专题

深度学习优化算法研究

引用
深度学习是机器学习领域热门的研究方向,深度学习中的训练和优化算法也受到了较高的关注和研究,已成为人工智能发展的重要推动力.基于卷积神经网络的基本结构,介绍了网络训练中激活函数和网络结构的选择、超参数的设置和优化算法,分析了各算法的优劣,并以Cifar-10数据集为训练样本进行了验证.实验结果表明,合适的训练方式和优化算法能够有效提高网络的准确性和收敛性.最后,在实际输电线图像识别中对最优算法进行了应用并取得了良好的效果.

深度学习、卷积神经网络、激活函数、正则化、超参数、优化算法

45

TP391(计算技术、计算机技术)

河北省自然基金

2018-12-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

155-159

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn