期刊专题

10.11896/j.issn.1002-137X.2018.10.049

一种基于Curv-SAE特征融合的人脸降维和识别方法

引用
相比于传统的降维算法,深度学习中的栈式自编码器(Stacked Autoencoder,SAE)能够有效地学习特征并实现高效降维,然而对输入特征极其敏感.第二代离散曲波变换(Discrete Curvelet Transform,DCT)能够提取出人脸的各向信息(包含边缘和概貌特征),确保SAE的输入特征充分,从而弥补了其不足.因此,提出了一种基于Curv-SAE特征融合的人脸识别降维算法,即对人脸图像进行DCT得到特征脸并将其作为SAE的输入特征进行训练,特征融合后将其输入到分类器中进行识别.在ORL和FERET人脸数据库上的实验表明,与小波变换相比,曲波的特征信息更丰富;与传统的降维算法相比,SAE的特征表达更充分且识别精度更高.

深度学习、人脸识别、第二代离散曲波变换、栈式自编码器、降维

45

TP391.41(计算技术、计算机技术)

国家自然科学基金资助重大项目41390454

2018-11-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

267-271,305

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn