期刊专题

10.11896/j.issn.1002-137X.2018.10.036

融合矩阵分解与距离度量学习的社会化推荐算法

引用
为解决传统推荐系统中存在的冷启动难题,基于距离反映偏好的假设提出了一种融合矩阵分解与距离度量学习的社会化推荐算法.该算法同时对样本和距离度量进行训练,在满足距离约束的前提下更新距离度量和用户与项目的坐标,并将用户与项目嵌入到统一的低维空间,利用用户与项目之间的距离生成推荐结果.基于豆瓣和Epi-nions数据集的对比实验结果验证了该方法可有效提高推荐系统的可解释性和精确度,明显优于基于矩阵分解的推荐方法.研究结果表明,所提方法缓解了传统推荐系统中存在的冷启动问题,为推荐系统的研究提供了另一种可供参考的研究思路.

社会化推荐、矩阵分解、距离度量学习、协同过滤

45

TP391(计算技术、计算机技术)

国家自然科学基金61672117,61379158

2018-11-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

196-201

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn