期刊专题

10.11896/j.issn.1002-137X.2018.10.029

基于Isolation Forest改进的数据异常检测方法

引用
针对现有的基于隔离森林(Isolation Forest)的数据异常检测算法检测精度低、执行效率差和泛化能力弱等问题,提出一种改进的数据异常检测方法SA-iForest.该方法基于模拟退火算法选择精度高和有差异性的隔离树来优化森林,同时去除冗余的隔离树,改进了隔离森林的森林构建.采用标准仿真数据集对所提方法进行验证,结果表明该方法与传统Isolation Forest和LOF方法相比,在准确率、执行效率和稳定性方面均有显著提高.

隔离森林、异常检测、SA-iForest、模拟退火

45

TP306(计算技术、计算机技术)

国家自然科学基金项目61502118

2018-11-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

155-159

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn