期刊专题

10.11896/j.issn.1002-137X.2018.07.045

基于显著性与脉冲耦合神经网络的图像分割

引用
针对复杂图像易受背景干扰的问题,提出一种基于显著性与脉冲耦合神经网络(Saliency and Pulse Coupled Neural Network,SPCNN)的图像分割方法.首先,利用显著性检测算法和最大类间方差法获得显著性图以及目标图像,排除了背景对初始种子点选取的干扰;然后,计算出显著性图的质心,并将其作为初始种子点;最后,采用改进的基于区域生长的脉冲耦合神经网络对目标图像进行分割.在Berkeley图像库和Ground truth Database图像库上对SPCNN模型进行了验证.实验结果表明,在一致性系数CC、相似性系数SC、综合指标IC 3个方面,SPCNN模型均优于所对比的PCNN模型、区域生长模型和RG-PCNN模型.

种子点、显著性、脉冲耦合神经网络、图像分割

45

TP183(自动化基础理论)

2018-08-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

259-263

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn