期刊专题

10.11896/j.issn.1002-137X.2018.07.038

基于最小特征值非线性修正的快速噪声水平估计算法

引用
鉴于从噪声图像上提取的原生图块协方差矩阵的最小特征值与噪声水平值之间具有显著的相关性,提出一种基于多项式回归技术训练非线性映射模型,直接将原生图块最小特征值修正为最终的噪声水平预测值的快速噪声水平估计算法.首先,选择具有代表性且无失真的自然图像作为训练图像集合;然后,对这些图像施以不同程度的高斯噪声构成样本训练图像库.在此基础上,提取各个噪声样本图像的原生图块,并使用PCA变化得到原生图块协方差矩阵的最小特征值;最后,利用多项式回归技术构建最小特征值与噪声水平值之间的非线性修正模型.实验表明,与现有算法相比,改进算法对高、中、低各级别的噪声都能鲁棒地进行预测,尤其在低水平噪声方面表现出色,在预测准确度和执行效率两方面具有显著的综合优势.

图像降噪、噪声水平估计、主成分分析、最小特征值、修正函数、低水平噪声

45

TP391(计算技术、计算机技术)

国家自然科学基金61662044 ,61163023 ,51765042 ,81501560 ,江西省自然科学基金20171BAB202017

2018-08-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

219-225

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn