10.11896/j.issn.1002-137X.2018.05.006
基于模糊神经网络的WSN无线数据收发单元故障诊断
在一些无线传感器网络(Wireless Sensor Network,WSN)安全监测系统中,节点长时间传输大量数据,导致无线数据收发单元容易出现功率下降和功率放大器(Power Amplifier,PA)被烧毁的现象,而此类故障的诊断方法一般比较复杂且低效.针对上述问题,在分析WSN单元级故障诊断的基础上,利用无线数据收发单元的电流模型,提出了一种基于模糊神经网络的无线数据收发单元故障诊断方法.首先,根据无线数据收发单元中发射消耗的电流与温度和供电电压的关系,建立电流模型;然后,利用聚类算法确定模糊神经网络模型结构,结合混合学习算法优化模糊规则的前件参数和后件参数;最后,提取训练完的模糊神经网络参数,以建立WSN节点故障诊断模型.实验结果表明,提出的无线数据收发单元故障诊断方法的计算量小,诊断准确度高;与高斯过程回归模型相比,其计算量降低了22.4%,诊断准确度提高了17.5%.
无线传感器网络、故障诊断、电流模型、模糊神经网络
45
TP277(自动化技术及设备)
2018-06-15(万方平台首次上网日期,不代表论文的发表时间)
共6页
38-43